Maximize Software Development ROI With Quality Assurance

Showing the value of the Quality Process

Thibault Dambrine

Agenda

Software Quality Assurance ROI

- Quantifying the Cost of Quality
- Justifying a Software QA/QC Budget

Software Quality Principles for Managers 101

- Quality Assurance vs. Quality Control
- Quality Methodologies

Part 1 Measuring Quality Assurance Return on Investment (ROI)

Quality Definition

PMBOK®

The degree to which a set of inherent characteristics [consistently] fulfills requirements

What is QUALITY worth to you?

- How does one quantify quality?
- How does one justify a QA/QC Staff?

• Price Of Compliance (POC) - Cost of Prevention, QA/QC • Price of Non-Compliance (PONC) - Cost of Internal Failures - Cost of External Failures

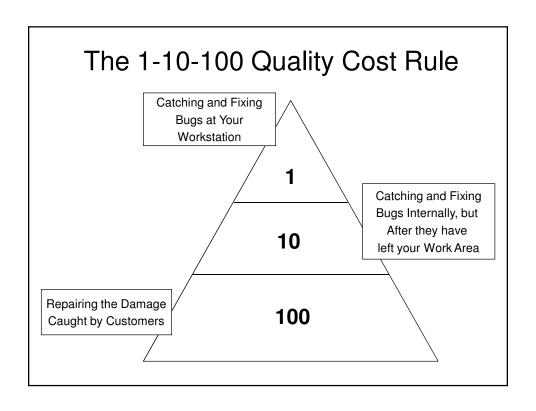
Price of Compliance - **POC** (1 of 2) **Development Activities**

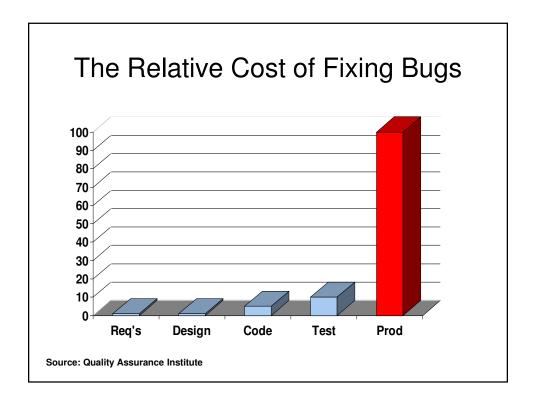
- Staff training
- · Requirements analysis
- Early prototyping
- Fault-tolerant design
- Defensive programming
- Accurate internal documentation
- Proper Requirements
- Detailed Design Documents

Price of Compliance (POC) (2 of 2) QA/QC Activities

- Design review
- Code inspection
- Unit testing
- End-to-End testing
- Regression Testing
- · Beta testing
- Test automation
- · Pre-release testing by staff

Price of Non-Compliance (PONC) Internal High Visibility Costs


- Bug fixes
- · Wasted in-house user time
- · Developer fixing time
- · Tester re-testing time
- Cost of late software product shipment
- · Receivables potentially affected


Price of Non-Compliance (PONC) External Low Visibility Costs

- Cost of decisions made based on bad data
- Lost Market Share
- · Technical support calls
- · Investigation of customer complaints
- · Refunds and recalls
- · Coding / testing of interim bug fix releases
- Shipping of updated product
- Added expense of supporting multiple versions of the product in the field
- PR work to soften drafts of harsh reviews
- Lost sales
- Lost customer goodwill Reputation for producing buggy software
- · Discounts to resellers to encourage them to keep selling the product
- · Warranty costs
- · Liability costs
- Government investigations if company subject to regulatory rules
- Penalties
- · All other costs imposed by law

#1 Cost of Quality Evaluation Pitfall: External or Low Visibility Costs

- Typically easy to overlook or minimize because hard to quantify
- Internal Costs often the only visible part of the PONC analysis - "iceberg effect"
- Also referred to as "SOFT COSTS" because hard to quantify

The 1-10-100 Rule Cost of Quality WITHOUT QA/QC

- 125 Bugs / Year, 80% caught by developers
- \$100.00 to fix a bug at developer level
- NO QA/QC COST

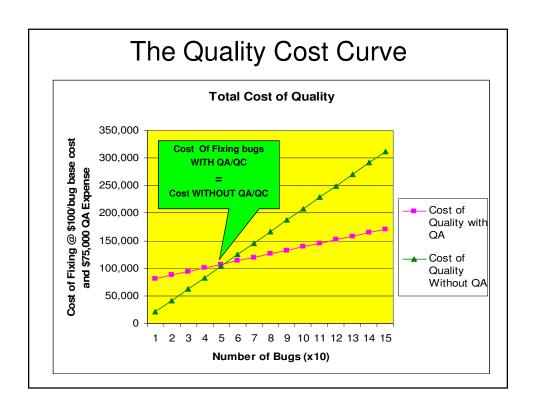
Cost of resolving bug	Cost of Resolving a Bug Immediately	Cost of Resolving a Bug at QC	Cost of resolving a Bug once it reached the users	Total Cost of Bug Fixes
1-10-100 Rule	1	10	100	
Distribution of 125 Bugs	100 x \$100 x 1	0 x \$100 x 10	25 x \$100 x 100	
Distribution of Costs @ \$100/bug	(100x\$100 x 1) \$10,000	(0x \$100 x 10) \$0	(25 x \$100 x 100) \$250,000	\$260,000
NO QA/QC TEAM COSTS				\$0
Total Cost				\$260,000

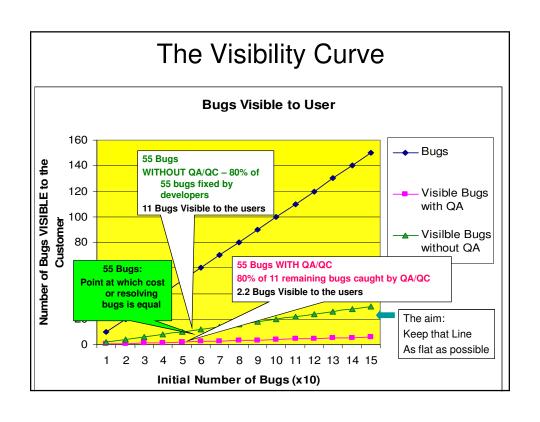
The 1-10-100 Rule Cost of Quality WITH QA/QC

- 125 Bugs / Year, 80% caught by developers
- \$100.00 to fix a bug at developer level
- \$75,000 QA/QC Costs/Year, 80% QC Catch

Cost of resolving bug	Cost of Resolving a Bug Immediately	Cost of Resolving a Bug at QC	Cost of resolving a Bug once it reached the users	Total Cost of Bug Fixes
1-10-100 Rule	1	10	100	
Distribution of 100 Bugs	100 x \$100 x 1	20 x \$100 x 10	5 x \$100 x 100	
Distribution of Costs @ \$100/bug	(100x\$100 x 1) \$10,000	(20x \$100 x 10) \$20,000	(5 x \$100 x 100) \$50,000	\$80,000
+ Cost of QA/QC Team				\$75,000
Total Cost				<u>\$155,000</u>

Quality Assurance Return On Investment (ROI) Internal View


Cost of quality without QA team: \$260,000
Cost of quality with QA team: \$155,000


======

• <u>Difference:</u> \$105,000

Money Spent on QA/QC for one year: \$75,000 Money Saved with QA/QC for one year: \$105,000

ROI using the 1-10-100 Rule for 1 year: 140%

The Ford Pinto Case - Part 1

"The Pinto was not to weigh an ounce over 2,000 pounds and not cost a cent over \$2,000."

The Ford Pinto Crash Data

Rear end Crash > 25 MPH: Gas Tank Fire

Rear end Crash > 40 MPH:
Gas Tank Fire
+ DOORS JAMMED SHUT!

The Ford Pinto Case Part 3

compress.mov

http://www.youtube.com/watch?v=rcNeorjXMrE

The Danger of QA Cost Analysis: The Ford Pinto Case Part 2

Ford's Cost/Benefit Analysis Relating to Pinto Model Rear-End Crash			
The "BENEFIT" (INTERNAL Cost Of Non- Compliance)	Gas tank related accidents- 180 burn deaths, 180 serious burn injuries, 2100 burned vehicles Unit Cost \$200,000 per death, \$67,000 per injury, \$700 per vehicle Total Cost: - 180 x (\$200,000) + 180 x (\$67,000) + 2100 x (\$700) Total: \$49.5 million		
The "COST" (Cost Of Compliance)	Recalling 11 million cars, 1.5 million light trucks to fix vehicles with this model of gasoline tank: Unit Cost \$11 per car, \$11 per truck Total Cost: (11,000,000 + 1,500,000) x \$11 = Total: \$137 million		

QA Cost Analysis: What did Ford Miss?

The "BENEFIT" INTERNAL or VISIBLE Cost of Non- Compliance	Gas tank related accidents- 180 burn deaths, 180 serious burn injuries, 2100 burned vehicles Unit Cost \$200,000 per death, \$67,000 per injury, \$700 per vehicle Total Cost: - 180 x (\$200,000) + 180 x (\$67,000) + 2100 x (\$700)
The "INVISIBLE" or EXTERNAL Cost Of Non- Compliance	Total: \$49.5 million - State of Indiana v. Ford Motor Co: Ford First American corporation ever indicted or prosecuted on criminal homicide charges - Lawsuits + Court Costs - Production stopped 5 months after trial - Lost Reputation - Small car market share lost Total: \$ BILLIONS, not millions!

The Danger of QA Cost Analysis: Missing the EXTERNAL COSTS!

The VISIBLE or "INTERNAL" Cost Of Non-Compliance Recognized by Ford and labled as "BENEFIT" [of not doing anything]	Total: \$49.5 million			
The INVISIBLE or "EXTERNAL" Cost of Non-Compliance NOT RECOGNIZED BY FORD [of not doing anything]	Total: \$BILLIONS			
VS.				
The "COST" (Cost Of Compliance – doing the \$11 repair)	Total: \$137 million			

Part 2 Software Quality Principles for Managers 101

Software Quality

Quality Control / Quality Assurance

Pareto Rule

Quality Model Considerations

Quality Control / Quality Assurance

ISO Definition:

Quality Control:

The operational techniques and activities that are used to fulfill requirements for quality

Quality Assurance:

All those planned and systematic activities implemented to provide adequate confidence that an entity will fulfill requirements for quality

Quality Control

Characterized by:

- -Tactical in nature
- -Technical skills
- -Attention to detail
- -Front-line Quality Checking Activity

Quality Control Outputs

· Crossed-off Checklist - Pass/Fail

If Fail:

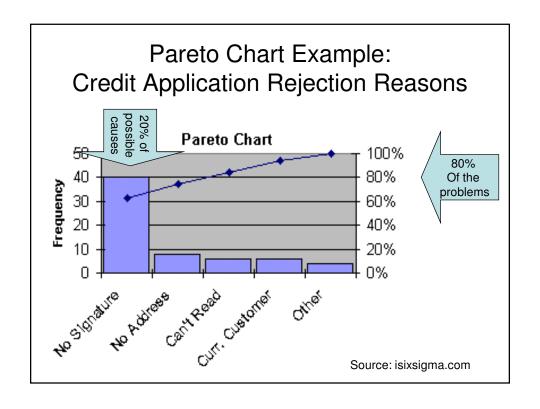
- Recommend Corrective Actions if needed
- Document Defects in Bug Track

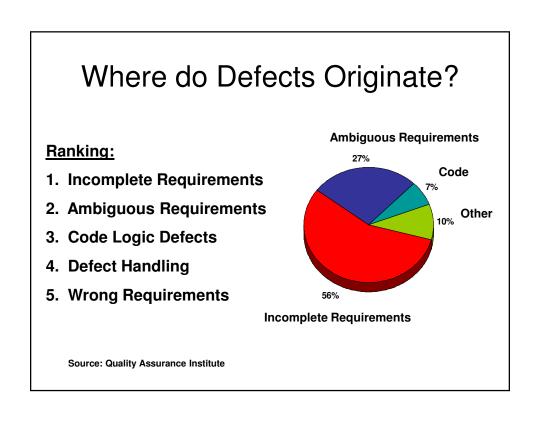
Quality Assurance

Characterized by:

- Strategic: important or essential in relation to a plan of action
- -Quality Planning
- -Consistency of measurements
- -What can be improved in the future?

"Bug Track" Considerations


- Document bugs properly data, circumstances, screens prints, library lists, sequence of events etc.
- Categorize the bugs reported
 - What type of bug (data? Formula? Screen Flow?)
 - From what module?
 - Using what programming language?
 - Batch or Interactive Processing?
 - How much time has been spent on QC?
 - Was this a Design bug?
 - How much time has been spent on the Fix (if applicable)


QA Bang-for-the-Buck The Pareto Rule (80/20) Rule

 Vilfredo Pareto (1848 – 1923): "80% of the land in Italy Is owned by 20% of the population"

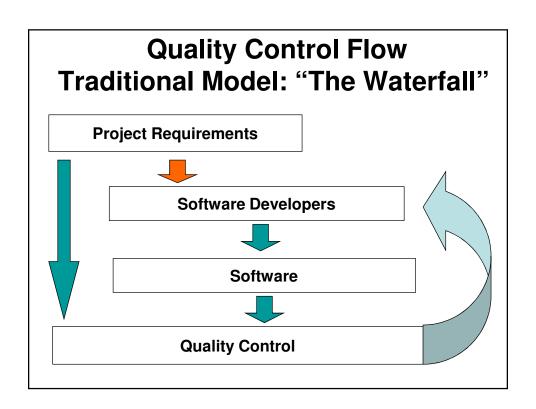
QA Application of the 80/20 rule

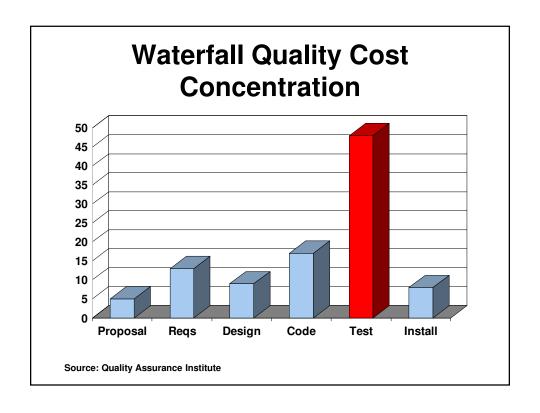
 80% of customer complaints arise from 20% of your products or services.

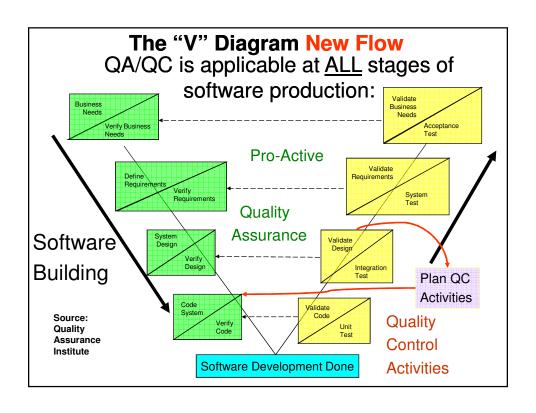
QA Bang-for-the-Buck Discovering your own 80/20 Rules

- Ensure you know your bug track database
- Categorize problems in a meaningful way
 - By type of problem
 - By module
 - By time spent repairing
- Use your bug track database to find the 80/20's
 - SQL
 - Microsoft XL
- Find where improving quality immediately will deliver best return for the QA investment

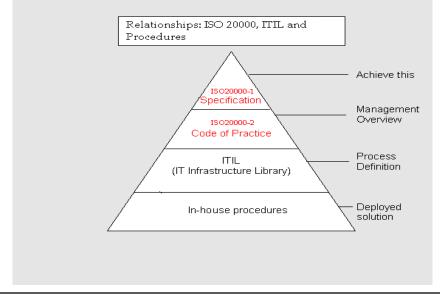
Find your Worst Offenders SQL Example


SELECT MODULE,


COUNT(*) MODULE_COUNT
FROM BUGTRACK_DB


GROUP BY MODULE

MODULE_COUNT	
25	
7	
3	


Quality Management Systems, Methodologies Worthwhile Reading

Capability Maturity Model (CMM)

- Developed to describe the capability of software contractors to provide software on time, within budget, and to acceptable standards
- Often used by Government or large companies

Method for Evaluating the Maturity of an Organization – 5 Levels

1. Initial - Follows little or no rules

Repeatable – Disciplined Process
 Defined – Standardized Disciplined Process

4. Managed – Using precise measurements

5. Optimizing – Quantitative feedback, continuous improvement

Quality Planning Resources: Six Sigma

· Origin of Six Sigma

+ or – 6 Standard deviations (sigma) from the mean

6 Sigma: 3.4 defect/million

By contrast:

3 Sigma: 2,700 defects/million

More on Six Sigma at http://www.isixsigma.com/ http://www.ge.com/sixsigma/

QC/QA Web Resources

http://satc.gsfc.nasa.gov/assure/agbsec3.txt

http://home.att.net/~iso9k1/tqm/tqm.html

http://www.isixsigma.com/

http://www.ge.com/sixsigma/

http://www.badsoftware.com/qualcost.htm

http://www.kaner.com/qualcost.htm

http://www.extremeprogramming.org/map/code.html

Quick Bugtrack Starter: BUGZILLA

- Bugzilla (bugtrack) http://www.bugzilla.org/
- Used by
 - -AMD
 - McGraw Hill Higher Education
 - Motorola
 - France Telecom
 - University of Minnesota
 - Indian Institute of Astrophysics

Points to Remember

- Sell the QA/QC VALUE PROPOSITION :
- Explain the Value Proposition
 - 1-10-100 Rule
- Explain the Quality Process
 - Why Requirements are critical
 - QA vs QC
 - Quantified knowledge can lead to improvement

Questions